Analysis of a gene that suppresses the morphological defect of bald mutants of Streptomyces griseus.
نویسندگان
چکیده
When present in multiple copies, orf1590 restored sporulation to class IIIA bald mutants of Streptomyces griseus, which form sporulation septa and thick spore walls prematurely. The orf1590 alleles from class IIIA bald mutants restored sporulation upon introduction at a high copy number into those same mutants, and the nucleotide sequence of one of these alleles was identical to that of the wild-type strain. We conclude that overexpression of orf1590 suppresses the defect in class IIIA bald mutants. Previous nucleotide sequence and transcript analyses suggested that orf1590 could encode two related proteins, P56 and P49.5, from nested coding sequences. A mutation that prevented the synthesis of P56 without altering the coding sequence for P49.5 eliminated the function of orf1590, as did amino acid substitutions in the putative helix-turn-helix domain located at the N terminus of P56 and absent from P49.5. To determine the coding capacity of orf1590, we analyzed translational fusions between orf1590 and the neo gene from Tn5. Measurement of the expression of fusions to the wild-type and mutant alleles of orf1590 indicated that P56 was the sole product of orf1590 during vegetative growth. Attempts to generate a nonfunctional frameshift mutation in orf1590 were unsuccessful in the absence of a second-site bald mutation, suggesting that orf1590 may be required during vegetative growth by preventing early sporulation. Our results are consistent with the hypothesis that P56 at a high level delays the premature synthesis of sporulation septa and spore walls in class IIIA mutants.
منابع مشابه
A rare leucine codon in adpA is implicated in the morphological defect of bldA mutants of Streptomyces coelicolor.
Streptomycetes are mycelial bacteria that produce sporulating aerial hyphae on solid media. Bald (bld) mutants fail to form aerial mycelium under at least some conditions. bldA encodes the only tRNA species able to read the leucine codon UUA efficiently, implying the involvement of a TTA-containing gene in initiating aerial growth. One candidate for such a gene was bldH, because the bldH109 mut...
متن کاملجداسازی و تأیید مولکولی سریع استرپتومایسس های تولید کننده آنتی بیوتیک استرپتومایسین
Introduction: Streptomyces species are mycelial, aerobic gram-positive bacteria that are isolated from soil and produce a diverse range of antibiotics. Streptomyces griseus produces the antibiotic, streptomycin and forms spores even in a liquid culture. The gene cluster for the production of Streptomycin antibiotic contains strR gene that encodes StrR, a pathway-specific regulator. Then, this p...
متن کاملThe secreted signaling protein factor C triggers the A-factor response regulon in Streptomyces griseus: overlapping signaling routes.
Members of the prokaryotic genus Streptomyces produce over 60% of all known antibiotics and a wide range of industrial enzymes. A leading theme in microbiology is which signals are received and transmitted by these organisms to trigger the onset of morphological differentiation and antibiotic production. The small gamma-butyrolactone A-factor is an important autoregulatory signaling molecule in...
متن کاملOxidation of Meloxicam by Streptomyces griseus
The aim of the present investigation was to biotransform the anti-inflammatory compound meloxicam by enzymes present in whole cells of five actinomycete cultures to produce novel bioactive derivatives. Among the actinomycetes screened, Streptomyces griseus NCIM 2622 was found to possess the enzyme system(s) that oxidize meloxicam into two metabolites whereas that present in S. griseus NCIM 2623...
متن کاملControl of the Streptomyces Subtilisin inhibitor gene by AdpA in the A-factor regulatory cascade in Streptomyces griseus.
AdpA in the A-factor regulatory cascade in Streptomyces griseus activates a number of genes required for secondary metabolism and morphological differentiation, forming an AdpA regulon. The Streptomyces subtilisin inhibitor (SSI) gene, sgiA, in S. griseus was transcribed in response to AdpA, showing that sgiA is a member of the AdpA regulon. AdpA bound a single site upstream of the sgiA promote...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 178 10 شماره
صفحات -
تاریخ انتشار 1996